激光掃描共聚焦顯微鏡(Laser scanning confocal microscope)是20世紀(jì)80年代中期發(fā)展起來(lái)并得到廣泛應(yīng)用的新技術(shù) [1] ,它是激光、電子像和計(jì)算機(jī)圖像處理等現(xiàn)代高科技手段滲透,并與傳統(tǒng)的光學(xué)顯微鏡結(jié)合產(chǎn)生的的細(xì)胞分子生物學(xué)分析儀器,在生物及醫(yī)學(xué)等領(lǐng)域的應(yīng)用越來(lái)越廣泛,已經(jīng)成為生物醫(yī)學(xué)實(shí)驗(yàn)研究的*工具 [2] 。
傳統(tǒng)熒光顯微鏡使用熒光物質(zhì)標(biāo)志細(xì)胞中的特定結(jié)構(gòu),不僅圖像與背景的對(duì)比度增強(qiáng),而且由于許多熒光顯微鏡的光源使用短波長(zhǎng)的紫外光,大大提高了分辨率(δ=0.61·λ/NA,其中δ為顯微鏡的分辨率;λ為照明光線的波長(zhǎng);NA 為物鏡的數(shù)值孔徑)。但當(dāng)所觀察的熒光標(biāo)本稍厚時(shí),傳統(tǒng)熒光顯微鏡一個(gè)難以克服的缺點(diǎn)就顯現(xiàn)出來(lái):焦平面以外的熒光結(jié)構(gòu)模糊、發(fā)虛。原因是大多數(shù)生物學(xué)標(biāo)本是層次區(qū)別的重疊結(jié)構(gòu)(如耳蝸基底膜。其實(shí)是外毛細(xì)胞 、多種支持細(xì)胞 、神經(jīng)纖維等組成的空間結(jié)構(gòu)),,在普通光學(xué)顯微鏡下聚焦平面的變化, 會(huì)表現(xiàn)出不同的形態(tài)。假若熒光標(biāo)記的結(jié)構(gòu)在不同層次上都有分布,且重疊在一起,反射熒光顯微鏡(epifluorescent microscope)不僅從焦平面上收集光量,而且來(lái)自焦平面上方或下方的散射熒光也被物鏡所接收,熒光顯微鏡的光學(xué)分辨率就要大大降低 。
在傳統(tǒng)光學(xué)顯微鏡基礎(chǔ)上,激光掃描共聚焦顯微鏡用激光作為光源,采用共軛聚焦原理和裝置,并利用計(jì)算機(jī)對(duì)所觀察的對(duì)象進(jìn)行數(shù)字圖像處理觀察、分析和輸出。 其特點(diǎn)是可以對(duì)樣品進(jìn)行斷層掃描和成像,進(jìn)行無(wú)損傷觀察和分析細(xì)胞的三維空間結(jié)構(gòu)[3]。 同時(shí),利用免疫熒光標(biāo)記和離子熒光標(biāo)記探針,該技術(shù)不僅可觀察固定的細(xì)胞、組織切片,還可以對(duì)活細(xì)胞的結(jié)構(gòu)、分子、離子及生命活動(dòng)進(jìn)行實(shí)時(shí)動(dòng)態(tài)觀察和檢測(cè),在亞細(xì)胞水平上觀察諸如 Ca2+,pH 值,膜電位等生理信號(hào)及細(xì)胞形態(tài)的變化,成為形態(tài)學(xué)、分子細(xì)胞生物學(xué)、神經(jīng)科學(xué)、藥理學(xué)、遺傳學(xué)等領(lǐng)域中新一代強(qiáng)有力的研究工具 [3] ,極大地豐富了人們對(duì)細(xì)胞生命現(xiàn)象的認(rèn)識(shí)。
激光共聚焦顯微鏡結(jié)構(gòu)編輯
激光共聚焦掃描顯微鏡(Confocal laser scanning microscope,CLSM)用激光作掃描光源,逐點(diǎn)、逐行、
逐面快速掃描成像,掃描的激光與熒光收集共用一個(gè)物鏡,物鏡的焦點(diǎn)即掃描激光的聚焦點(diǎn),也是瞬時(shí)成像的物點(diǎn)。系統(tǒng)經(jīng)一次調(diào)焦,掃描限制在樣品的一個(gè)平面內(nèi)。調(diào)焦深度不一樣時(shí),就可以獲得樣品不同深度層次的圖像,這些圖像信息都儲(chǔ)于計(jì)算機(jī)內(nèi),通過(guò)計(jì)算機(jī)分析和模擬,就能顯示細(xì)胞樣品的立體結(jié)構(gòu)。
在結(jié)構(gòu) [4] 配置上,激光掃描共聚焦顯微鏡除了包括普通光學(xué)顯微鏡的基本構(gòu)造外,還包括激光光源、掃描裝置、檢測(cè)器、計(jì)算機(jī)系統(tǒng) (包括數(shù)據(jù)采集、處理、轉(zhuǎn)換、應(yīng)用軟件)、圖像輸出設(shè)備、光學(xué)裝置和共聚焦系統(tǒng)等部分 [2]。由于該儀器具有高分辨率、高靈敏度、“光學(xué)切片”(Optical sectioning)、三維重建、動(dòng)態(tài)分析等優(yōu)點(diǎn),因而為基礎(chǔ)醫(yī)學(xué)與臨床醫(yī)學(xué)的研究提供了有效手段。此外,CLSM 對(duì)熒光樣品的觀察具有明顯的優(yōu)勢(shì),只要能用熒光探針進(jìn)行標(biāo)記的樣品就可用其觀察。
激光共聚焦掃描顯微鏡既可以用于觀察細(xì)胞形態(tài),也可以用于細(xì)胞內(nèi)生化成分的定量分析、光密度統(tǒng)計(jì)以及細(xì)胞形態(tài)的測(cè)量, 配合焦點(diǎn)穩(wěn)定系統(tǒng)可以實(shí)現(xiàn)長(zhǎng)時(shí)間活細(xì)胞動(dòng)態(tài)觀察。
激光共聚焦顯微鏡原理編輯
在普通寬視野光學(xué)顯微鏡中,整個(gè)標(biāo)本全部都被水銀弧光燈或氙燈的光線照明,圖像可以用肉眼直接觀察 [5] 。 同時(shí),來(lái)自焦點(diǎn)以外的其他區(qū)域的熒光對(duì)結(jié)構(gòu)的干擾較大,尤其是標(biāo)本的厚度在 2um 以上時(shí),其影響更為明顯。
激光共聚焦顯微鏡脫離了傳統(tǒng)光學(xué)顯微鏡的場(chǎng)光源和局部平面成像模式,
圖2 激光掃描共聚焦顯微鏡光路圖
圖2 激光掃描共聚焦顯微鏡光路圖
采用激光束作光源,激光束經(jīng)照明針孔,經(jīng)由分光鏡反射至物鏡,并聚焦于樣品上,對(duì)標(biāo)本焦平面上每一點(diǎn)進(jìn)行掃描。 組織樣品中如果有可被激發(fā)的熒光物質(zhì),受到激發(fā)后發(fā)出的熒光經(jīng)原來(lái)入射光路直接反向回到分光鏡,通過(guò)探測(cè)針孔時(shí)先聚焦,聚焦后的光被光電倍增管(PMT)探測(cè)收集,并將信號(hào)輸送到計(jì)算機(jī),處理后在計(jì)算機(jī)顯示器上顯示圖像 [6] 。 在這個(gè)光路中,只有在焦平面的光才能穿過(guò)探測(cè)針孔,焦平面以外區(qū)域射來(lái)的光線在探測(cè)小孔平面是離焦的,不能通過(guò)小孔。因此,非觀察點(diǎn)的背景呈黑色,反差增加,成像清晰。由于照明針孔與探測(cè)針孔相對(duì)于物鏡焦平面是共軛的,焦平面上的點(diǎn)同時(shí)聚焦于照明針孔與探測(cè)針孔,焦平面以外的點(diǎn)不會(huì)在探測(cè)針孔處成像,即共聚焦[7]。 以激光作光源并對(duì)樣品進(jìn)行掃描,在此過(guò)程中兩次聚焦,故稱為激光掃描共聚焦顯微鏡。
應(yīng)用編輯
應(yīng)用功能
激光掃描共聚焦顯微鏡(Confocal laser scanning microscope,CLSM)是近代的細(xì)胞生物醫(yī)學(xué)分析儀器之一。它是在熒光顯微鏡成像的基礎(chǔ)上加裝激光掃描裝置,使用紫外光或可見(jiàn)光激光熒光探針,利用計(jì)算機(jī)進(jìn)行圖像處理,不僅可觀察固定的細(xì)胞、組織切片,還可對(duì)活細(xì)胞的結(jié)構(gòu)、分子、離子進(jìn)行實(shí)時(shí)動(dòng)態(tài)地觀察和檢測(cè)。目前,激光掃描共聚焦顯微技術(shù)已用于細(xì)胞形態(tài)定位、立體結(jié)構(gòu)重組、動(dòng)態(tài)變化過(guò)程等研究,并提供定量熒光測(cè)定、定量圖像分析等實(shí)用研究手段,結(jié)合其他相關(guān)生物技術(shù),在形態(tài)學(xué)、生理學(xué)、免疫學(xué)、遺傳學(xué)等分子細(xì)胞生物學(xué)領(lǐng)域 [7] 得到廣泛應(yīng)用。
組織和細(xì)胞中的定量熒光測(cè)定
激光掃描共聚焦顯微鏡可以從固定和熒光染色的標(biāo)本以單波長(zhǎng)、雙波長(zhǎng)或多波長(zhǎng)模式,對(duì)單標(biāo)記或多標(biāo)記的細(xì)胞及組織標(biāo)本的共聚焦熒光進(jìn)行數(shù)據(jù)采集和定量分析,同時(shí)還可以利用沿縱軸上移動(dòng)標(biāo)本進(jìn)行多個(gè)光學(xué)切片的疊加, 形成組織或細(xì)胞中熒光標(biāo)記結(jié)構(gòu)的總體圖像,以顯示熒光在形態(tài)結(jié)構(gòu)上的精確定位。 常用于原位分子雜交、腫瘤細(xì)胞凋亡觀察、單個(gè)活細(xì)胞水平的 DNA 損傷及修復(fù)等定量分析。
細(xì)胞間通訊的研究
動(dòng)物和植物細(xì)胞中縫隙連接介導(dǎo)的胞間通信在細(xì)胞增殖和分化中起著重要作用。 激光掃描共聚焦顯微鏡可通過(guò)觀察細(xì)胞縫隙連接分子的轉(zhuǎn)移來(lái)測(cè)量傳遞細(xì)胞調(diào)控信息的一些離子、小分子物質(zhì)。 該技術(shù)可以用于研究胚胎發(fā)生、生殖發(fā)育、神經(jīng)生物學(xué)、腫瘤發(fā)生等過(guò)程中縫隙連接通訊的基本機(jī)制和作用,也可用于鑒別對(duì)縫隙連接作用有潛在毒性的化學(xué)物質(zhì)。
細(xì)胞物理化學(xué)測(cè)定
激光掃描共聚焦顯微鏡可對(duì)細(xì)胞形狀、周長(zhǎng)、面積、平均熒光強(qiáng)度及細(xì)胞內(nèi)顆粒數(shù)等參數(shù)進(jìn)行自動(dòng)測(cè)定。 能對(duì)細(xì)胞的溶酶體、線粒體、內(nèi)質(zhì)網(wǎng)、細(xì)胞骨架、結(jié)構(gòu)性蛋白質(zhì)、DNA、RNA、酶和受體分子等細(xì)胞內(nèi)特異結(jié)構(gòu)的含量、組分及分布進(jìn)行定量、定性、定時(shí)及定位測(cè)定。
細(xì)胞內(nèi)鈣離子和 pH 值動(dòng)態(tài)分析
激光掃描共聚焦顯微鏡技術(shù)是測(cè)量若干種離子濃度并顯示其分布的有效工具,對(duì)焦點(diǎn)信息的有效辨別使在亞細(xì)胞水平顯示離子分布成為可能。 利用熒光探針,激光掃描共聚焦顯微鏡可以測(cè)量單個(gè)細(xì)胞內(nèi) pH 和多種離子(Ca2+、K+、Na+、Mg2+)在活細(xì)胞內(nèi)的濃度及變化。 一般來(lái)說(shuō),電生理記錄裝置加像技術(shù)檢測(cè)細(xì)胞內(nèi)離子量變化的速度相對(duì)較快,但其圖像本身的價(jià)值較低,而激光掃描共聚焦顯微鏡可以提供更好的亞細(xì)胞結(jié)構(gòu)中鈣離子濃度動(dòng)態(tài)變化的圖像,這對(duì)于研究鈣等離子細(xì)胞內(nèi)動(dòng)力學(xué)有意義。
三維圖像的重建
傳統(tǒng)的顯微鏡只能形成二維圖像,激光掃描共聚焦顯微鏡通過(guò)對(duì)同一樣品不同層面的實(shí)時(shí)掃描成像,進(jìn)行圖像疊加可構(gòu)成樣品的三維結(jié)構(gòu)圖像。 它的優(yōu)點(diǎn)是可以對(duì)樣品的立體結(jié)構(gòu)分析,能十分靈活、直觀地進(jìn)行形態(tài)學(xué)觀察,并揭示亞細(xì)胞結(jié)構(gòu)的空間關(guān)系。
熒光漂白恢復(fù)技術(shù)
該方法的原理是一個(gè)細(xì)胞內(nèi)的熒光分子被激光漂白或淬滅,失去發(fā)光能力,而鄰近未被漂白細(xì)胞中的熒光分子可通過(guò)縫隙連接擴(kuò)散到已被漂白的細(xì)胞中,熒光可逐漸恢復(fù)。 可通過(guò)觀察已發(fā)生熒光漂白細(xì)胞其熒光恢復(fù)過(guò)程的變化量來(lái)分析細(xì)胞內(nèi)蛋白質(zhì)運(yùn)輸、受體在細(xì)胞膜上的流動(dòng)和大分子組裝等細(xì)胞生物學(xué)過(guò)程。
長(zhǎng)時(shí)程觀察細(xì)胞遷移和生長(zhǎng)
活細(xì)胞觀察通常需要一定的加熱裝置及灌注室,以保持培養(yǎng)液的適宜溫度及 CO2 濃度的恒定。 目前的激光掃描共聚焦顯微鏡,其光子產(chǎn)生效率已大大改善,與更亮的物鏡和更小光毒性的染料結(jié)合后可以減小每次掃描時(shí)激光束對(duì)細(xì)胞的損傷,用于數(shù)小時(shí)的長(zhǎng)時(shí)程定時(shí)掃描,記錄細(xì)胞遷移和生長(zhǎng)等細(xì)胞生物學(xué)現(xiàn)象。
應(yīng)用領(lǐng)域
在細(xì)胞及分子生物學(xué)基礎(chǔ)研究中的應(yīng)用
激光掃描共聚焦顯微鏡應(yīng)用照明針與檢測(cè)孔共軛成像,有效抑制了焦外模糊成像并可對(duì)標(biāo)本各層分別成像,對(duì)活細(xì)胞行無(wú)損傷的“光學(xué)切片”這種功能也被形象的稱為“顯微 CT”。CLSM 還可以對(duì)貼壁的單個(gè)細(xì)胞或細(xì)胞群的胞內(nèi)、胞外熒光作定位、定性、定量及實(shí)時(shí)分析,并對(duì)胞內(nèi)成分如線粒體、內(nèi)質(zhì)網(wǎng)、高爾基體、DNA、RNA、Ca2+、Mg2+、Na+ 等的分布、含量等進(jìn)行測(cè)定及動(dòng)態(tài)觀察,使細(xì)胞結(jié)構(gòu)和功能方面的研究達(dá)到分子水平。
在腫瘤和抗癌藥物篩選研究中的應(yīng)用
普通顯微鏡及電子顯微鏡,僅能對(duì)腫瘤相關(guān)抗原進(jìn)行定性分析,而 CLSM 則可對(duì)單標(biāo)記或者多標(biāo)記細(xì)胞、組織標(biāo)本及活細(xì)胞進(jìn)行重復(fù)性的熒光定量分析,從而對(duì)腫瘤細(xì)胞的抗原表達(dá)、細(xì)胞結(jié)構(gòu)特征,抗腫瘤藥物的作用及機(jī)制等方面定量化 [8-9] 。
在血液病學(xué)和醫(yī)學(xué)免疫學(xué)研究中的應(yīng)用
激光掃描共聚焦顯微鏡觀察免疫細(xì)胞和系統(tǒng),如樹(shù)突狀細(xì)胞、單核-吞噬細(xì)胞系統(tǒng)、自然殺傷細(xì)胞、淋巴細(xì)胞時(shí),在準(zhǔn)確細(xì)胞定位的同時(shí)有效鑒定免疫細(xì)胞的性質(zhì)。
在大腦和神經(jīng)科學(xué)中的應(yīng)用
激光掃描共聚焦顯微鏡分層掃描發(fā)現(xiàn)神經(jīng)軸突的內(nèi)部結(jié)構(gòu)連續(xù)性好。用激光掃描共聚焦顯微鏡能觀察到腦干組織中神經(jīng)軸突的正常走向,可排除在熒光顯微鏡下由此造成的一些病理假象 [10] 。并且激光掃描共聚焦顯微鏡能觀察神經(jīng)軸突的三維結(jié)構(gòu),因此應(yīng)用 CLSM 有可能觀察到普通光鏡下未能發(fā)現(xiàn)的神經(jīng)組織的細(xì)微病變[11]。
在眼科研究中的應(yīng)用
利用激光掃描共聚焦顯微鏡可以觀察晶狀體,角膜、視網(wǎng)膜、虹膜和睫狀體的結(jié)構(gòu)和病理變化[12]。
在骨科研究領(lǐng)域中的應(yīng)用
激光掃描共聚焦顯微鏡在骨科研究領(lǐng)域的應(yīng)用現(xiàn)狀表明,CLSM在觀測(cè)骨細(xì)胞形態(tài)學(xué)研究、骨細(xì)胞特異性蛋白(骨鈣素)以及骨細(xì)胞之間的相互作用具有顯著的優(yōu)勢(shì)。
結(jié)語(yǔ)編輯
激光掃描共聚焦顯微鏡作為一項(xiàng)全新的實(shí)驗(yàn)手段和強(qiáng)有力的研究工具,為我們解決一些以往研究工作中不能解決的技術(shù)難題創(chuàng)造了條件,因而必將得到更為廣泛的應(yīng)用。隨著新軟件的不斷開(kāi)發(fā)及各個(gè)學(xué)科 [11-12] 的不斷發(fā)展和相互滲透,相信它還將會(huì)有更廣闊的發(fā)展前景。
激光共聚焦服務(wù) 實(shí)驗(yàn)耗材
參考價(jià) | 面議 |
- 公司名稱上海宸功生物技術(shù)有限公司
- 品 牌
- 型 號(hào)
- 所 在 地上海
- 廠商性質(zhì)生產(chǎn)廠家
- 更新時(shí)間2023/8/13 9:05:27
- 訪問(wèn)次數(shù)636
聯(lián)系方式:陳女士18918128223查看聯(lián)系方式
聯(lián)系我們時(shí)請(qǐng)說(shuō)明是 環(huán)保在線 上看到的信息,謝謝!
ELISA(酶聯(lián)免疫)試劑盒是上海宸功生物的主營(yíng)產(chǎn)品,ELISA kit欄目提供該類目產(chǎn)品說(shuō)明書(shū)以及提供產(chǎn)品報(bào)價(jià)與網(wǎng)上訂購(gòu)。
上海宸功生物科技有限公司經(jīng)過(guò)數(shù)年的努力發(fā)展已迅速成為集產(chǎn)品研發(fā)、生產(chǎn)、經(jīng)營(yíng)為一體的專業(yè)化生物工程公司。公司具有具有完善的實(shí)驗(yàn)技術(shù)開(kāi)發(fā)平臺(tái),成熟的抗原、抗體研發(fā)系統(tǒng),熟練掌握各種酶聯(lián)技術(shù),結(jié)合公司的研發(fā)團(tuán)隊(duì),可以有效的保證公司產(chǎn)品強(qiáng)的穩(wěn)定性和高的準(zhǔn)確性,同時(shí)又具有Z有競(jìng)爭(zhēng)力的價(jià)格。公司目前主要提供生化試劑、分子生物學(xué)試劑及試劑盒,各種抗體及免疫學(xué)試劑盒、實(shí)驗(yàn)耗材等多門(mén)類上萬(wàn)種產(chǎn)品,產(chǎn)品涉及分子生物學(xué)、細(xì)胞生物學(xué)、免疫學(xué)等生命科學(xué)的各個(gè)領(lǐng)域。
利用計(jì)算機(jī)進(jìn)行圖象處理,從而得到細(xì)胞或組織內(nèi)部微細(xì)結(jié)構(gòu)的熒光圖象,以及在亞細(xì)胞水平上觀察諸如Ca2+、pH值、膜電位等生理信號(hào)及細(xì)胞形態(tài)的變化。