主要功能 | |||||
1. 專業(yè)分析浮游植物細(xì)胞,同時(shí)具備傳統(tǒng)流式細(xì)胞儀經(jīng)典功能 | |||||
2. 可以掃描記錄各種光學(xué)信號(hào)(散射、熒光)的動(dòng)態(tài)變化 | |||||
3. 可實(shí)現(xiàn)高頻、原位分析水體微生物群落及優(yōu)勢(shì)種變化 | |||||
4. 可在完整的藻類粒徑譜范圍內(nèi)對(duì)生物量進(jìn)行線性評(píng)估 | |||||
5. 可直接分析大尺寸范圍的浮游藻類、團(tuán)體結(jié)構(gòu),可現(xiàn)場(chǎng)分析微囊藻群體結(jié)構(gòu)變化 | |||||
6. 可調(diào)式PMT可根據(jù)檢測(cè)粒徑大小調(diào)節(jié)檢測(cè)器靈敏度 | |||||
7. 流動(dòng)成像技術(shù)可對(duì)感興趣感興趣的聚群進(jìn)行圈門設(shè)定后專門拍照 | |||||
8. 的脈沖信號(hào)指紋圖譜技術(shù),圈門直觀方便,更真實(shí)反應(yīng)細(xì)胞形態(tài) | |||||
9. 水下測(cè)量(CytoSub)可在整個(gè)真光層分析浮游植物動(dòng)態(tài) | |||||
10. 可整合入浮標(biāo)中或其它載體上進(jìn)行在線監(jiān)測(cè),可配合CTD對(duì)水體做剖面測(cè)量 | |||||
11.實(shí)現(xiàn)實(shí)驗(yàn)室遠(yuǎn)程控制基站式自動(dòng)在線監(jiān)測(cè),可實(shí)現(xiàn)*自動(dòng)檢測(cè),無(wú)人值守在線監(jiān)測(cè) | |||||
測(cè)量參數(shù) | |||||
光學(xué)參數(shù): 前向散射FWS、側(cè)向散射SWS,熒光散射FLR、 FLY、 FLO | |||||
形態(tài)參數(shù): 能同時(shí)獲得包括細(xì)胞和顆粒形態(tài)物理特性(數(shù)量、長(zhǎng)度、大小、形態(tài)、粒度、色素、峰數(shù)等)、群體特征、脈沖圖譜等在內(nèi)的9個(gè)拓?fù)鋵W(xué)指標(biāo)及最少45組參數(shù) | |||||
計(jì)數(shù):自然水體總顆粒計(jì)數(shù),圈門后可集群計(jì)數(shù)及濃度計(jì)算,可實(shí)現(xiàn)鏈狀藻單細(xì)胞數(shù)計(jì)數(shù)功能 | |||||
其他測(cè)量參數(shù):分析體積、進(jìn)樣速率等 | |||||
應(yīng)用領(lǐng)域 | |||||
1. 海洋生態(tài)學(xué)與淡水生態(tài)學(xué) | |||||
2. 流域監(jiān)測(cè)與管理 | |||||
3. 海洋學(xué)與湖沼學(xué) | |||||
4. 有害藻華(HABs)預(yù)警 | |||||
5. 微藻生物技術(shù) | |||||
6. 河流、水庫(kù)、湖泊、海洋的監(jiān)測(cè)與管理 | |||||
7. 監(jiān)測(cè)與管理 | |||||
8. 水源地、水廠、污水處理廠的水質(zhì)監(jiān)測(cè) | |||||
9. 富營(yíng)養(yǎng)化研究 | |||||
10. 藻類環(huán)境生物學(xué) | |||||
11. 水產(chǎn)養(yǎng)殖 | |||||
選購(gòu)指南: | |||||
一、便攜式浮游植物流式細(xì)胞儀CytoSense | |||||
系統(tǒng)組成: | |||||
流式細(xì)胞儀分析主機(jī):相干高質(zhì)量連續(xù)固態(tài)激光器,標(biāo)配波長(zhǎng)488nm, 可選波長(zhǎng)445nm、635nm、640nm、660nm等,最多可配置7個(gè)檢測(cè)器(檢測(cè)通道含F(xiàn)WS L+R、SWS、YF、RF、OF)。 | |||||
野外便攜式外殼:儀器采用碳素纖維外殼,防濺水設(shè)計(jì),更輕便(<15kg),整機(jī)安裝于輕質(zhì)鋁質(zhì)框,帶高質(zhì)量防震墊。包裝于便攜式航空箱內(nèi)。 | |||||
數(shù)據(jù)分析系統(tǒng):含便攜式筆記本電腦,預(yù)裝數(shù)據(jù)采集軟件CytoUSB,和數(shù)據(jù)分析軟件CytoClus | |||||
批量處理數(shù)據(jù)分析軟件EasyClus : 需購(gòu)買MatLab軟件配合使用 | |||||
高速流動(dòng)成像模塊:可選。 | |||||
便攜式浮游植物流式細(xì)胞儀 | Easyclus 粒徑分布圖 | Easyclus 散點(diǎn)圖 | |||
系統(tǒng)組成: | |||||
主機(jī):淺水版Cytosub (水下20米),含CytoSense所有基本配置 | |||||
浮標(biāo)模塊:包括浮標(biāo)、太陽(yáng)能電池板、充電電池、浮標(biāo)燈、電子系統(tǒng)、無(wú)線傳輸裝置和采樣管防水連接器等。根據(jù)用戶需要,也可擴(kuò)展為易拆卸浮標(biāo)模塊,這樣用戶可以非常方便的在CytoSense(室內(nèi)用)和CytoBuoy(在線監(jiān)測(cè))間轉(zhuǎn)換。 | |||||
注意:野外在線監(jiān)測(cè)時(shí)不僅于以浮標(biāo)作為平臺(tái),其他平臺(tái)也可,只要可以具備放置CytoSense的空間及供電即可。同時(shí),增加Bacterial staining module,可實(shí)現(xiàn)水體異養(yǎng)微生物自動(dòng)染色和在線分析,可在線檢測(cè)藻類、細(xì)菌、浮游動(dòng)物及沉積物等顆粒。具體信息請(qǐng)。 | |||||
CytoBuoy 浮體 | |||||
CytoBuoy通訊模式:無(wú)線通訊 | |||||
三、水下浮游植物流式細(xì)胞儀——CytoSub | |||||
主機(jī):臺(tái)式機(jī)CytoSense是防濺水設(shè)計(jì),可以在野外使用,但不能水下使用。CytoSense加上一個(gè)水下模塊(SUB MODULE)就組成了水下式流式細(xì)胞儀CytoSub。 | |||||
水下模塊:一個(gè)耐受200 m水深壓力的防水外殼,閥門和進(jìn)樣環(huán)路部分(包括循環(huán)泵),電子控制單元,數(shù)采,水下連接器和支架。 | |||||
Cytosub 主機(jī) | CytoSense 與CytoSub 轉(zhuǎn)換 | ||||
工作模式一:AUV搭載 | |||||
利用英國(guó)國(guó)家海洋中心AutoSub型AUV搭載CytoSub | |||||
工作模式二:水下垂直剖面分析 | |||||
與CTD結(jié)合一起測(cè)量 | |||||
注意:此外,水下型浮游植物流式細(xì)胞儀CytoSub可應(yīng)用于浮標(biāo),Ferrybox等監(jiān)測(cè)平臺(tái),在垂直剖面不同層位獲取浮游植物生物量信息,對(duì)研究微囊藻沉浮機(jī)制,浮游動(dòng)物、水文、水質(zhì)等因素對(duì)浮游植物生態(tài)位影響提供數(shù)據(jù)依據(jù)。 | |||||
CytoSense 檢測(cè)對(duì)象 | |||||
產(chǎn)地:荷蘭 CytoBuoy |
參考文獻(xiàn) |
數(shù)據(jù)來(lái)源: Cytometry , Goolge scholar等,截至2016年,共收集相關(guān)文獻(xiàn)近100篇。 |
1. Simon Bonato a, Elsa Breton , al e: Spatio-temporal patterns in phytoplankton assemblages ininshore–offshore gradients using flow cytometry: A case study in the eastern English Channel, Journal of Marine Systems 2016,76-83.[CytoSense] 2. Goran Bakalar & Vinko Tomas, Possibility of Using Flow Cytometry in the Treated Ballast Water Quality Detection, Pomorski zbornik 51 (2016), 43-55 3. Quan Zhou, Wei Chen, al e: A flow cytometer based protocol for quantitative analysis of bloom-forming cyanobacteria (Microcystis) in lake sediments, Journal of Environmental Sciences 2012, 24(9) 1709–1716 4. A. Mansour, I. Leblond al.e: Invited Paper: Wireless Sensor Networks for Ecosystem Monitoring & Port Surveillance. (WSCN 2013) 5. Endymion D. Cooper , Bastian Bentlage al e: Metatranscriptome profiling of a harmful algal bloom.Harmful Algea 37(2014)75-83. 6. SERGIO A. COELHO-SOUZA, FáBIO V. ARAúJO al e: Bacterial and Archaeal Communities Variability Associated with Upwelling and Anthropogenic Pressures in the Protection Area of Arraial do Cabo (Cabo Frio region - RJ). Anais da Academia Brasileira de Ciências (2015) 87(3):1737-1750 7. Malkassian, A., D. Nerini, al. e: Functional analysis and classification of phytoplankton based on data from an automated flow cytometer. Cytometry Part A 2011, 94A:263-275. [Cytosense] 8. Thyssen, M., B. Beker, al. e: Phytoplankton distribution during two contrasted summers in a Mediterranean harbour: combining automated submersible flow cytometry with conventional techniques. Environmental Monitoring and Assessment 2011, 173:1-16. 9. Thyssen, M., Denis M: Temporal and Spatial High-Frequency Monitoring of Phytoplankton by Automated Flow Cytometry and Pulse-Shape Analysis. Springer Netherlands 2011:293-298. 10. Vidoudez, C., J. C. Nejstgaard, al. e: Dynamics of Dissolved and Particulate Polyunsaturated Aldehydes in Mesocosms Inoculated with Different Densities of the Diatom Skeletonema marinoi. Marine Drugs 2011, 9: 345-358. 11. Hansen, B. W., H. H. Jakobsen, al. e: Swimming behavior and prey retention of the polychaete larvae Polydora ciliata. Journal of Experimental Biology 2010:3237-3246. 12. Pereira GC, Figuiredo ARd, Jabor PM, Ebecken1 NFF: Assessing the ecological status of plankton in Anjos Bay: a flowcytometry approach. Biogeosciences Discuss 2010, 7:6243–6264. [cytobuoy] 13. Barofsky, A., Simonelli P, al e: Growth phase of the diatom Skeletonema marinoi influences the metabolic profile of the cells and the selective feeding of the copepod Calanus spp. J Plankton Res 2009, 32:263-272. [CytoBuoy] 14. Donk V, E., Cerbin S, al e: The effect of a mixotrophic chrysophyte on toxic and colony-forming cyanobacteria. Freshwater Biology 2009, 54:1843-1855. 15. Pereira, C. G, Granato A, al. e: Virioplankton Abundance in Trophic Gradients of an Upwelling Field. Brazilian Journal of Microbiology 2009, 40:857-865. [CytoBuoy] 16. Thyssen, M., Mathieu D, al. e: Short-term variation of phytoplankton assemblages in Mediterranean coastal waters recorded with an automated submerged flow cytometer. J Plankton Res 2008, 30:1027-1040. [Cytosub] 17. Thyssen, T. M, Garcia N, al. e: Sub meso scale phytoplankton distribution in the north east Atlantic surface waters determined with an automated flow cytometer. Biogeosciences Discuss 2008, 5:2471-2503. [Cytosub] 18. Dubelaar, J. GB, Casotti R, al. e: Phytoplankton and their analysis by flow cytometry. Flow Cytometry with Plant Cells 2007:287-322. [CytoBuoy] 19. Takabayashi, M., Lew K, al e: The effect of nutrient availability and temperature on chain length of the diatom, Skeletonema costatum. J Plankton Res 2006, 28:831-840. [CytoSense] 20. Takabayashi, M., Wilkerson FP, al. e: Response Of Glutamine Synthetase Gene Transcription And Enzyme Activity To External Nitrogen Sources In The Diatom Skeletonema Costatum (Bacillariophyceae). J Phycol 2005, 41:84-94. [Cytobuoy] 21. Dubelaar, J. GB, Geerders PJF: Innovative technologies to monitor plankton dynamics. Sea Technol 2004, 45:15-21. [CytoSub] 22. Dubelaar, J. GB, Geerders PJF, al. e: High frequency monitoring reveals phytoplankton dynamics. J Environ Monit 2004, 6:946-952. [Cytosense] 23 Cunninghama, A., McKeea D, al e: Fine-scale variability in phytoplankton community structure and inherent optical properties measured from an autonomous underwater vehicle. J Mar Syst 2003, 43:51-59. 24. Dubelaar, J. GB, Gerritzen PL: CytoBuoy: a step forward towards using flow cytometry in operational oceanography. Sci Mar (Barc) 2000, 64:255-265. [CytoBuoy] 25. Dubelaar, J. GB, Jonker RR: Flow cytometry as a tool for the study of phytoplankton. Scientia Marina 2000, 64. [CytoBuoy] 26. Jonker R, Droben R, Tarran G, Medlin L, Wilkins M, Garcla L, zabala L, boddy l: Automated identification and characterisation of microbial populations using flow cytometry: the AIMS project. scientia marina 2000, 64:225-234. [Cyto] 27. Woodd-Walker, S. R, Gallienne CP, al e: A test model for optical plankton counter (OPC) coincidence and a comparison of OPC-derived and conventional measures of plankton abundance. J Plankton Res 2000, 22:473-483. 28. Dubelaar, J. GB, Gerritzen PL, al e: Design and first results of CytoBuoy: A wireless flow cytometer for in situ analysis of marine and fresh waters. Cytometry 1999, 37:247-254. [CytoBuoy] 29. Wilkins, F. M, Boddy L, al e: Identification of Phytoplankton from Flow Cytometry Data by Using Radial Basis Function Neural Networks." Appl Environ Microbiol 1999, 65:4404-4410. 30. Jonker, R. R, Meulemans JT, al e: Flow cytometry: A powerful tool in analysis of biomass distributions in phytoplankton. Water SciTechnol 1995, 32:177-182. [Cytosense] 31. Jonker, R. R, G. B. J. Dubelaar, al. e: The European Optical Plankton Analyser: A high dynamic range flow cytometer. Scientia Marina 1994. 32. Dubelaar, G. B. J., A. Groenewegen ea: Optical plankton analyser: a flow cytometer for plankton analysis, II: Specifications. Cytometry 1989, 10:529-539. [OPA] 33. Peeters, J. C. H., G. B. J. Dubelaar, al e: Optical plankton analyser: A flow cytometer for plankton analysis, I: Design considerations. Cytometry 1989, 10:522-528. [OPA] |