美國(guó)哥倫比亞大學(xué)的研究人員找到了一種利用組織工程學(xué)技術(shù)來(lái)修補(bǔ)受損心臟的新方法,這種技術(shù)能夠幫助心臟組織進(jìn)行自我修復(fù)。近日刊登在美國(guó)《國(guó)家*學(xué)報(bào)》上的這一醫(yī)學(xué)突破幫助人類在對(duì)抗當(dāng)今社會(huì)zui嚴(yán)重的健康威脅之一———心血管疾病的征途上邁出重要一步。
在哥倫比亞大學(xué)生物醫(yī)學(xué)工程學(xué)教授戈?duì)栠_(dá)娜·武尼亞克-諾瓦科維奇的帶領(lǐng)下,研究人員開(kāi)發(fā)出一種治療心肌梗塞的全新細(xì)胞療法。他們成功將人體修復(fù)細(xì)胞的功能與全生物成分的支架結(jié)合起來(lái)使用。經(jīng)過(guò)體外培養(yǎng)的修復(fù)細(xì)胞具有更強(qiáng)的血管再造能力,并且能夠增加梗塞組織的血流量,而新型支架的用處就是把這些細(xì)胞輸送到心臟的受損部位。通過(guò)這種技術(shù),研究人員能夠使修復(fù)細(xì)胞停留在梗塞部位(如果單純向患處注入修復(fù)細(xì)胞,就會(huì)有大量細(xì)胞白白流失掉),同時(shí)提高梗塞部位的細(xì)胞存活能力與功能性(否則梗塞部位的細(xì)胞會(huì)因?yàn)楣┭蛔愣鴰缀跞克劳觯?/div>
武尼亞克-諾瓦科維奇說(shuō):“這一新技術(shù)令我們非常興奮。這種方法具有很大的靈活性,我們認(rèn)為應(yīng)該可以很方便地用它來(lái)輸送用于修復(fù)心肌的其他類型的人體干細(xì)胞,幫助我們研究心臟修復(fù)術(shù)的原理。”
研究小組移除了人體心肌上的一些細(xì)胞,植入具有同樣結(jié)構(gòu)與機(jī)械特性的蛋白質(zhì)支架。他們?cè)谥Ъ軆?nèi)注入人體間充質(zhì)祖細(xì)胞(一種能夠發(fā)育成多種細(xì)胞的干細(xì)胞),然后把這塊補(bǔ)片應(yīng)用在心臟受損組織上。補(bǔ)片促進(jìn)了新血管的發(fā)育,而且補(bǔ)片釋放出的蛋白質(zhì)能夠刺激原生組織進(jìn)行自我修復(fù)。不僅如此,研究小組還進(jìn)一步了解了細(xì)胞與支架設(shè)計(jì)對(duì)心臟修復(fù)過(guò)程的影響。
武尼亞克-諾瓦科維奇說(shuō):“令人振奮的是,我們進(jìn)一步學(xué)會(huì)了如何通過(guò)創(chuàng)造合適的細(xì)胞環(huán)境,來(lái)‘命令’(修復(fù))細(xì)胞發(fā)育成人體組織。這些細(xì)胞是真正的‘生物組織工程師’,我們只要?jiǎng)?chuàng)造出環(huán)境,它們就能完成任務(wù)。由于這種環(huán)境必須類似于真實(shí)的體內(nèi)環(huán)境,所以這一領(lǐng)域的工作需要由生物工程學(xué)家、干細(xì)胞生物學(xué)家與臨床醫(yī)師進(jìn)行跨學(xué)科合作才能完成。通過(guò)再造與替換受損組織,我們就能延長(zhǎng)患者的生命,提高他們的生活質(zhì)量。”
武尼亞克-諾瓦科維奇及其研究小組已在沿著這條研究思路進(jìn)行其他多項(xiàng)研究。他們目前正在研究如何利用人體干細(xì)胞培養(yǎng)收縮性心肌補(bǔ)片。這樣的話,心肌的肌肉與血管部分就都能制造出來(lái)了。
他們還在研究上述心臟補(bǔ)片內(nèi)的修復(fù)細(xì)胞在被植入梗塞心臟組織后,是如何發(fā)育出機(jī)械能力和導(dǎo)電性的,以及這兩項(xiàng)功能如何才能在體外環(huán)境中復(fù)制出來(lái)。 (huyubio.com)
原文出處:
PNAS doi: 10.1073/pnas.1104619108
Composite scaffold provides a cell delivery platform for cardiovascular repair
Amandine F. G. Godier-Furnémonta, Timothy P. Martensa,b, Michael S. Koeckerta, Leo Wana, Jonathan Parksa, Kotaro Araic, Geping Zhangb, Barry Hudsonb, Shunichi Hommac, and Gordana Vunjak-Novakovica,1
Abstract
Control over cell engraftment, survival, and function remains critical for heart repair. We have established a tissue engineering platform for the delivery of human mesenchymal progenitor cells (MPCs) by a fully biological composite scaffold. Specifically, we developed a method for complete decellularization of human myocardium that leaves intact most elements of the extracellular matrix, as well as the underlying mechanical properties. A cell–matrix composite was constructed by applying fibrin hydrogel with suspended cells onto decellularized sheets of human myocardium. We then implanted this composite onto the infarct bed in a nude rat model of cardiac infarction. We next characterized the myogenic and vasculogenic potential of immunoselected human MPCs and demonstrated that in vitro conditioning with a low concentration of TGF-β promoted an arteriogenic profile of gene expression. When implanted by composite scaffold, preconditioned MPCs greatly enhanced vascular network formation in the infarct bed by mechanisms involving the secretion of paracrine factors, such as SDF-1, and the migration of MPCs into ischemic myocardium, but not normal myocardium. Echocardiography demonstrated the recovery of baseline levels of left ventricular systolic dimensions and contractility when MPCs were delivered via composite scaffold. This adaptable platform could be readily extended to the delivery of other reparative cells of interest and used in quantitative studies of heart repair.