310S彎頭現(xiàn)貨,焊接時選用較少的線,焊絲前端(受熱端)處于氣體保護中,以連續(xù)送絲為宜,杜絕斷續(xù)送絲,同時應避免用焊絲攪拌熔池。焊接全過程均宜采用短弧焊接,控制好層間溫度。收弧時將弧坑填滿,且滯后30s停氣,防止熱裂紋產(chǎn)生。(3)所有鎢極應避免與熔池和焊絲接觸,盡可能縮短電弧長度,防止焊縫夾鎢。(4)保證合適的焊接速度。速度慢,焊縫金屬線較大,使焊縫金屬合金元素燒損較多,焊接熱影響區(qū)產(chǎn)生過熱組織,故晶粒粗大,焊接接頭物理性能下降。
進行氫弧焊焊接時,需采用氫氣保護(氫氣純度〕99.99),以連續(xù)送絲為宜,同時應避免用焊絲攪拌熔池,且焊絲受熱端不得抽離氫氣保護區(qū)。(3)避免焊接區(qū)在高溫下停留時間過長,以防止焊接區(qū)在使用過程中產(chǎn)生晶間腐蝕。(4)在保證焊透的條件下,應盡量用較小的焊接線。(5)施焊過程中,應嚴格控制焊接熱輸人,采用小電流快速焊接,弧長越短越好,同時提高焊縫的冷卻速度(鋪墊銅板)。(6)嚴格控制焊縫起弧、收弧和固定焊部位的焊接質量。
本研究使用RMS(均方根平均值,又稱為Rq)和Ra(值算術平均值)來定量描述表面粗糙度,它們是根據(jù)AFM圖像個數(shù)據(jù)點的高度值(將各數(shù)據(jù)點的高度均值設為0),使用如下的統(tǒng)計方法[11]計算的,其中hi為測量的到的表面高度值,n為被統(tǒng)計的表面高度值的數(shù)量。RMS=1nΣni=1h2槡i(1)Ra=1nΣni=1|hi|(2)2結果與討論2.1掃描尺度對表面粗糙度的影響兩個樣品在不同掃描尺度下的典型AFM圖像見圖1。在1μm尺度的AFM圖像中,兩個樣品表面都有很明顯的細小顆粒,直徑一般在50nm左右對于10μm尺度的AFM圖像,機械拋光樣品表面能看到臺階狀起伏的晶界,橫向尺寸在微米量級,而電化學拋光的樣品表面晶界并不明顯,說明電化學拋光相對于機械拋光在這個尺度上的整平作用具有優(yōu)勢。在70μm尺度的AFM圖像中,各樣品表面都有波浪形突起存在,這些“波浪"的橫向尺寸約為20μm,電化學拋光與機械拋光在這個尺度的整平作用的區(qū)別并不明顯。根據(jù)AFM的測量結果,可以計算各樣品在不同掃描尺度的表面粗糙度,表面粗糙度RMS值與AFM掃描尺度的關系曲線見圖。
1、純鎳:N5、N02201、Ni201、2.4068、Ni99.0LC、N6、N7、N02200、Ni200、2.4066、Ni99.0 。
2、蒙乃爾(Monel):N04400、N05500、Monel K500、國標:67Ni30Cu。
3、因科洛伊合金:N08800、Incoloy800、N08810、Incoloy800H、N08811、Incoloy800HT、N08825、Incoloy825、N08020、N08028、N08031 、Alloy31、Alloy28合金、Alloy20合金。
4、 因科奈爾合金:N07750、Inconel-X750合金、N07718、Inconel718合金、N06600、Inconel 600、N06601、Inconel601合金、N06690、Inconel690合金、Inconel600合金、N06600、N06625、Inconel625合金、ZRJWXTG。
5、哈氏合金:Hastelloy B-2、Hastelloy B-3、Hastelloy C-276、Hastelloy C-22、Hastelloy C-2000、Hastelloy G-30。
在熱處理過程中,由于碳和鉻、鉬等合金元素的擴散速率不同,碳向晶界的擴散速度大于鉻元素的擴散速度,固溶溫度過低會造成合金硬度偏高,導致機械性能降低,固溶處理的目的是使鎳基合金在高溫下快速冷卻,在很短的時間通過敏化溫度區(qū)域,過飽和的碳來不及大量析出,貧鉻區(qū)來不及充分形成,使材料產(chǎn)出的晶間腐蝕敏感性降低,不充分的固溶會導致晶內存在未溶碳化物聚集在原始晶界,使得晶界產(chǎn)生貧鉻區(qū);
為了便于了解表面粗糙度隨尺度的大范圍變化而產(chǎn)生的區(qū)別,這些圖中都采用了雙對數(shù)坐標。在本研究進行的各種粗糙度測量和分析中都發(fā)現(xiàn),無論使用RMS還是Ra值來描述,表面粗糙度隨著都是基本*的,主要的區(qū)別只是RMS值大于Ra值,因此本文中大都使用RMS值來描述表面粗糙度,Ra值的信息一般不專門列出。從圖2可以首先看到,隨著掃描尺度的增加,兩個樣品的表面粗糙度都會出現(xiàn)單調變大,而且表面粗糙度開始的變化較為緩慢,而當掃描于10μm后表面粗糙度急劇增大。由于兩種樣品的表面粗糙度與AFM掃描尺度之間的關系曲線在雙對數(shù)坐標下都不是線性的,可以判斷它們的表面并不是分形性質的[17]。另外從圖2可以看到,電化學拋光的哈氏合金樣品(EPH)表面粗糙度在各種掃描尺度下一般都明顯小于機械拋光的樣品(MPH),不過在70μm的尺度下前者只是比后者略小。所以,電化學拋光相對于機械拋光在較小的尺度上的整平效果更為顯著,這與圖1中看到的現(xiàn)象*。
C276因其特殊的性能在火力發(fā)電機組煙氣脫硫中被廣泛使用,但因哈氏合金C276為國外鋼材牌號,國內目前尚無與其相關的標準或規(guī)范,因此就其性能和焊接工藝加以總結和討論,對于同類工程類似項目的施工具有一定的應用和參考價值。化工行業(yè)有各種各樣的化學介質,在不同的工藝環(huán)境下,它們表現(xiàn)出了不同程度的腐蝕性。而哈氏合金對多種惡劣的腐蝕環(huán)境都有優(yōu)異的抗腐蝕性能,是實現(xiàn)很多化工工藝*的材料。
本研究使用RMS(均方根平均值,又稱為Rq)和Ra(值算術平均值)來定量描述表面粗糙度,它們是根據(jù)AFM圖像個數(shù)據(jù)點的高度值(將各數(shù)據(jù)點的高度均值設為0),使用如下的統(tǒng)計方法[11]計算的,其中hi為測量的到的表面高度值,n為被統(tǒng)計的表面高度值的數(shù)量。RMS=1nΣni=1h2槡i(1)Ra=1nΣni=1|hi|(2)2結果與討論2.1掃描尺度對表面粗糙度的影響兩個樣品在不同掃描尺度下的典型AFM圖像見圖1。在1μm尺度的AFM圖像中,兩個樣品表面都有很明顯的細小顆粒,直徑一般在50nm左右對于10μm尺度的AFM圖像,機械拋光樣品表面能看到臺階狀起伏的晶界,橫向尺寸在微米量級,而電化學拋光的樣品表面晶界并不明顯,說明電化學拋光相對于機械拋光在這個尺度上的整平作用具有優(yōu)勢。在70μm尺度的AFM圖像中,各樣品表面都有波浪形突起存在,這些“波浪"的橫向尺寸約為20μm,電化學拋光與機械拋光在這個尺度的整平作用的區(qū)別并不明顯。根據(jù)AFM的測量結果,可以計算各樣品在不同掃描尺度的表面粗糙度,表面粗糙度RMS值與AFM掃描尺度的關系曲線見圖。
誘發(fā)氣孔產(chǎn)生的因素主要有:坡口表面油脂,氧化物、在下料過程中記號筆的痕跡等異物沒有清理干凈,氣體保護不當、純度不高、流量不夠。避免上述情況的存在,可減少氣孔生成幾率。(3)保證合適的焊接速度。速度慢,焊縫金屬線較大,使焊縫金屬合金元素燒損較多,熱影響區(qū)產(chǎn)生過熱組織,導致晶粒粗大,焊接接頭物理性能下降。速度快,熔池保護不好,熔池金屬未充分的冶金反應,焊縫溫度偏低,焊縫邊緣熔合不好,容易產(chǎn)生裂紋。
Ni系,特性為耐熱,有良好的抗高溫氧化和耐氯離子斷裂性能,在高濃度氯化物中以及含有微量氯化物和氧的熱水和高溫水中,具有良好的耐腐蝕性能。在制造加熱器、換熱器、蒸發(fā)器、蒸餾塔以及脂肪酸處理用冷凝器等有這不可替代的作用,其焊接性能和機械性能良好,承受高溫及高壓性良好,國內外消耗量巨大,合金的生產(chǎn)工藝使得合金材料出口歐美等國家,實現(xiàn)了化,我廠材料已達到了水平;
在焊縫及熱影響區(qū)網(wǎng)格劃分較密,在遠離焊縫的區(qū)域網(wǎng)格劃分較疏,節(jié)約了分析成本和計算時間,保證了有限元分析的精度和經(jīng)濟性。網(wǎng)格劃分如圖2所示。溫度場計算單元類型為DC3D8,應力場計算單元類型為C3D8。1.4焊接熱源GTAW采用高斯熱源就可以滿意的模擬結果[5~8],本文將電弧看成輻射狀對稱并呈高斯分布作用于管道表面,用FORTRAN語言編寫熱源子程序DFLUX,在ABAQUS調用該子程序進行計算。隨著時間的變化,電弧隨焊縫做環(huán)向移動,是電弧加熱半徑和大功率。
一般采用平衡盤,隨著平衡盤的沖刷和磨損,軸向力在改變,常常出現(xiàn)軸向力的突然增加而導致軸承和整機的損壞,高速泵則沒有大的軸向力問題。這樣,高速泵就從結構上了大部分多級泵的缺點。因此,在一些醋酸裝置的設計或改造的選型中,為了降低維護工作量及維護費用,使工藝生產(chǎn)裝置穩(wěn)定運行,選擇單級的高速泵(部分流泵)來替代結構復雜、難于維護的多級離心泵。3哈氏合金C276性能概述11物理性能C276合金的物理性能如下:密度比熱425Jlkg/k彈性模量205GPa(21℃)。